Overblog Suivre ce blog
Editer l'article Administration Créer mon blog

Recherche

3 décembre 2005 6 03 /12 /décembre /2005 18:03

Exercice : Calculer la dérivée de f définie par f(x) = ln(cos(x)) où x appartient à  I = [0, Pi/2[.

Correction :

Justification de la dérivabilité

Déjà f est bien définie sur I et dérivable car c'est une composée de fonctions dérivables sur I. En effet : f(x) =f1(f2(x)) où f2(x) = cos(x) et f1(x) = ln(x). f2 est dérivable sur R donc sur I et quand x est dans I cos x est dans R+* or f1 est dérivable sur R*+. Donc par composition, f est dérivable sur I.

Calcul de la dérivée

[f1(f2(x))]' = f1'(f2(x)) f2'(x) or f1'(x) = 1/x et f2'(x) = - sinx ainsi

f(x) = -sinx/cosx.

Partager cet article

Repost 0
Published by Norbert Verdier - dans GEII_Sem1
commenter cet article

commentaires

Articles Récents

Liens